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A simple laboratory model for the oceanic circulation 

By J. PEDLOSKY AND H. P. GREENSPAN 
Mathematics Department M.I.T. 

(Received 16 March 1966 and in revised form 17 May 1966) 

A linear theory is developed for the motion of a viscous, incompressible fluid 
in a rotating cylinder with a sloping bottom. 

An analysis of the normal modes of oscillation reveals that the presence of the 
bottom slope introduces a new set of low frequency inertial oscillations to 
replace the purely geostrophic modes which are not allowed in this geometry. 
The new waves possess mean circulation and are the mechanism by which the 
fluid adjusts to changes in the rotation rate of the container, a process discussed 
in detail. 

The steady motion produced in the cylinder when the cylinder’s upper surface 
rotates a t  a different rate than the bottom surface is studied. It is shown that 
the presence of the bottom slope inhibits the steady fluid motion in the body of 
the cylinder and introduces a non-symmetric, high velocity side wall boundary 
layer. 

Experimental evidence, presented to validate the theory, reproduces certain 
important features of the oceanic circulation. 

1. Introduction 
There are two objectives of the present research. The first is to examine those 

nearly rigid rotating flows for which the theory of Greenspan (1965) must be 
modified or extended. The second is to study a simple laboratory model which is 
capable of reproducing certain important features of interest to the study of large- 
scale oceanic circulations. Both purposes are served and the ends achieved 
by considering a single configuration, the ‘sliced’ cylinder shown in figure 1. 
(The cylinder is bounded by the surfaces r = ro, z = L, z = y tan a.) 

The general theory cited above applies to any container shape whose entire 
surface is an envelope of closed geostrophic contours C, defined in the following 
way. If z measures distance along the rotation axis, and z = f (x, y), z = - g(x ,  y) 
are the equations of the top and bottom surfaces of the container, then a geo- 
strophic contour C is a curve of constant total height f +g. It is important to 
note that the sliced cylinder possesses no closed geostrophic contours. 

The analysis of the linear equations of motion, scaled with respect to the 
container height L, the rotation rate O and the deviation from rigid rotation 
SOL, which in the rotating frame are 

Q / a t  + 2k x q = - Vp + EV2q, (1) 

v . q  = 0, (2) 
E = 11/QL2, 
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showed that two distinct classes of inviscid natural modes exist of the form 
Qeih t .  The geostrophic mode corresponds to zero frequency ( A  = 0 ) ,  and repre- 
sents a flow for which the Coriolis force and pressure gradient are in exact balance. 

X 

FIGURE 1. The 'sliced' cylinder configuration. 

The geostrophic"pressure, #o, is then a function only of total height h = f+ g with 
an extremely slow time variation 

q50 = f$o(h, Eh) .  

The velocity is 

with 

and the circulation on a geostrophic contour is in general not zero. Viscous 
corrections require the calculation of the O(Ef4) flow field. 

Inertial modes, Q, eihn t ;  @, e i b  t, correspond to non-zero oscillation frequencies 
and have a number of properties commonly associated with all eigenvalue 
problems. For example, - 2  < A, < 2, and modes of different frequencies are 
orthogonal SQ,.Q;~. = 0. 

The dagger denotes complex conjugation. Furthermore, these oscillatory modes 
possess no mean circulation about geostrophic contours, i.e. 

and this distinction allows the complete modal synthesis of an arbitrary dis- 
turbance. 
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Clearly the 'sliced ' cylinder configuration, for which no geostrophic mode 
exists because there are no closed geostrophic contours, falls outside the scope 
of this theory and the theory must be modified. Although the geostrophic mode 
is excluded in the sliced cylinder, such motion is possible (arbitrary in fact) in 
the right circular cylinder, a = 0, because any  closed curve is then a geostrophic 
contour. Thus if a is small (but a $ E i )  we are faced with a situation in which a 
slight geometrical change reduces an infinite number of modes to none. It will 
be shown that the geostrophic mode is then completely replaced by a new infinite 
set of low frequency, depth independent inertial oscillations called Rossby waves 
(Rossby 1939). Each of these new quasi-geostrophic inertial waves reduces to 
an allowable steady motion when a = 0. The modes do possess average vorticity 
(the mean circulation theorem does not apply to this geometry) and with the 
addition of the rest of the inertial waves any initial disturbance can be repre- 
sented. 

2. The Rossby modes 
Our concern is with the Rossby modes, all of which degenerate into the general 

geostrophic flow when a = 0. To find the inviscid Rossby modes, set E = 0 
and let 

q = QeiAt, p = $eiAt, (3) 

(4) 

Q = Q'O) + ~lQ(l) + . . . , 
q5 = p + a p +  ..., 
h = ah(1) + aZh(2) + . . . . 

Each of the inertial modes which exists in the case a = 0 exists in the new con- 
figuration in a slightly altered form. Discussion of their modification is omitted. 
The scaling in (4) is designed for a discussion of only the Rossby wave modes. 

I with 

Upon substitution of these expansions into (1) and (Z), it  follows that 

with Q(O).f=O on z = O  and z =  1 

and Q"J).P = 0 on r = a = T~/L .  

The first-order problem is 

(6) 

(7) 

1 iAU)Q(O) + Zf; x QU) = - V$U), 

V.Q(') = 0, 

with Q(1).& = 0 on z = 1, 

on x = o (YZJQ(O)/~Z + ~ ( 1 ) ) .  & - Q(o).J^ = o 
andQ(l ) .P=Oonr=a .  

may be written as 

with $0) = 0 on r = a. Thus, the primary velocity field is independent of height 
and is geostrophic; to this order it is identical to one of the possible geostrophic 

The velocity amplitude Q(0) can be expressed in terms of the pressure since ( 5 )  

Q(0) = if; x VcjW, a$@)/& = 0, 
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modes in the right circular cylinder. The solution of the O(a) problem is required 
to determine these modes precisely. 

The function Q(1) can also be expressed in terms of q5(O) by taking the curl of the 
momentum equations, (6), and then integrating with respect to  x .  The result is 

0'') = $iA(')(x - 1) Vz#")k + A(x, y), (8 )  

where A is arbitrary. However, since Q(l). & = 0 on z = I 

A .& = 0. 

An equation for #O) is obtained by satisfying the boundary conditions on Q(I) 

at the inclined surface, i.e. (8) is substituted into (7) yielding 

subject to  the boundary condition 

#to) = 0 on r = u. 

The solutions of the above eigenvalue problem are 

( 10) 
= Jm(kmnr/u) exp i[mO + kmn(r/u) cos 01, 

AEk = alkmn, 

where J,(kmn) = 0 and n ranges over all integer values, both positive and nega- 
tive. These modes have a preferred direction of phase propagation in the direction 
of negative x and are dynamically similar to the waves found by Rossby (1939) 
in his /I-plane model of the atmosphere. It is well known that in certain circum- 
stances the effect of a depth incline is dynamically similar to the ,&effect and 
it is not surprising that the eigen modes found here are similar to those found by 
Longuet-Higgins (1965) and Pedlosky (1965) in their studies of two-dimensional 
motions in bounded ocean basins. 

Obviously these Rossby waves are without a vertical structure but they do 
have all the properties (orthogonality, etc.) of the regular inertial oscillations. 
However, in distinction to the regular inertial oscillations, these modes do have 
an O(1) mean circulation about contours of constant T .  (These would be geo- 
strophic contours if a! = 0.) The circulation is 

The situation is entirely similar for any shaped lower surface for which closed 
geostrophic contours do not exist as long as the deviation from a level plane is 
small. If 

is the bottom boundary, then the equation for the basic, order one pressure 
amplitude corresponding to (9) is 

2 = - w ( x ,  Y) 



A simple laboratory model for the oceanic circulution 295 

Although the boundary-value problem becomes more difficult, the general 
conclusions remain the same. If the container has no geostrophic contours, so 
that geostrophic modes with mean circulation are not possible, then the Rossby 
modes arise to compensate for the loss of a steady geostrophic flow (or part there- 
of). If the container has geostrophic contours, Rossby waves may still be possible, 
but they do not possess mean circulation. The geostrophic mode then possesses 
all the mean circulation and the Rossby modes have the same character as the 
regular inertial modes. For example, if g = ,/(x2 + y2), then circles T equal constant 
are geostrophic contours and Rossby wave modes are present: 

$Ckexp (iaAEht) = J2m(kmnr/a) exp (i(mO+ aAEk,t)}, 
where Jzm(kmn) = 0 and Agk = 8rna2/kLn. 

In  this case the Rossby waves propagate along the geostrophic contours and have 
no net circulation around a geostrophic contour unless m = 0, in which case 
A:; = 0 thereby degenerating the solution into one of the infinite number of 
purely geostrophic modes. 

3. The spin-up problem 
Spin-up in the sliced cylinder differs markedly from that in the symmetric 

configuration when a = 0. The physical problem involves a container and fluid 
in an initial state of solid body rotation. The rotation rate of the container is then 
impulsively changed by a small amount and an adjustment to a new state of 
rigid rotation occurs. As viewed from a co-ordinate system moving with the 
container, the initial velocity distribution in the sliced cylinder is to O(a)  

or 
For the right circular cylinder, Greenspan & Howard (1963) showed that the 

subsequent O( 1)  motion is just a low viscous decay of the initial state: 
q = - r6 exp ( - 2EBt), 

p/u2 = (1 - r2/a2) exp ( - 2EBt). (13) 

The motion remains symmetrical and only the azimuthal velocity is affected. 
When the bottom surface is tilted, the ensuing motion differs dramatically 
from that just described. The initial state flings all fluid columns across lines of 
constant total height inducing vorticity relative to the rotating frame by 
vortex tube stretching. If a 9 E.5, this vorticity change is larger than that pro- 
duced by Ekman layer suction, completely altering the character of the spin- 
up. All the Rossby waves are excited by the initial state, and for that matter, 
only these depth independent inertial modes. The resulting flow exhibits a 
propagation of vorticity from one side of the container to the other, cells of 
vortical motion moving from positive to negative 2. 

The general solution of the problem for the primary flow variables can be 
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The orthogonality relationship is used to determine the Fourier coefficients 
from the initial velocity distribution 

A m ,  = 14. *QAndv / /Qmn*QAn,dv ,  

or in terms of the pressure 

The calculation is straightforward and the result is 

A,, = 2 ( i ) - m ~ 2 / k k n .  (15) 

With some algebraic manipulation it follows that 
O0 sm 

m=O n=l k m ,  
p/a2 = 8 C Jm(kmnr/a) cos [kmn(r/a) cos 8+ aat - +mn] cosm8, (16) 

where 8, = 1 (m + O ) ,  

s, = 3 (m = 0). 

Another form convenient for computation is 
2 

a, s, 
a2 m=O n=l kmm 
- = 1 - 6) - 16 J, (kmnr/a) cosmdsin [kmn (r /a)  cos8 

aat + aat - 9mnJ sin-. (17)  
2kmn 

The flow development is shown in figures 2-4 which display the summation of 
the preceding series a t  three typical times. The vorticity waves appear at the 
right and proceed to the left side of the container, from position E to Win figure 1. 
Since the frequency of each mode appearing in (17) decreases with increasing 
kmn (i.e. with decreasing horizontal scale), for small times only the largest scale 
modes make a significant contribution to (17). As time increases, more and 
more waves become prominent until viscosity dissipates the motion. The 
viscous corrections can be shown to involve the multiplication of the right-hand 
sides of (16) or (17) by exp ( - 2Ett). That is, the viscous spin-down time of each 
Rossby mode due to Ekman suction is independent of scale. A similar result was 
found in the case of a model rectangular P-plane ocean (Pedlosky 1965). 

Preliminary experiments carried out at M.I.T. by R. Beardsley indicate 
reasonably good agreement with the theoretical predictions of phase speed and 
structure of the Rossby normal modes, and with the general nature of the spin- 
up dynamics. 

As mentioned above, the Rossby modes found here in the sliced cylinder axe 
completely similar to those found in the study of the simplest time-dependent 
bounded ocean models. The agreement of the theory presented here with ex- 
periments carried out in the sliced cylinder encourages the view that more compli- 
cated time-dependent problems of oceanographic interest can be profitably 
studied both theoretically and experimentally in this configuration. Indeed 
we may speculate that the process by which one oceanographic state of motion 
relaxes into another, as in a monsoonal change, may be qualitatively similar to 
the spin-down dynamics discussed here. 
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FIGURE 2. Pressure isolines or streamlines for rigid rotation in the sliced cylinder at time 
zero. The direction of the flow is shown; the shallowest region is due north, the deepest 
portion due south. In  figures 2, 3 and 4, p' = p/aa .  
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FIGURE 3. Pressure isolines a t  time aat = 77. A counter vortex appears 
in the east and begins to propagate west. 
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FIGURE 4. Streamlines at time aat = 37~. 

4. Steady driven motions 
As we noted, steady free geostrophic motion is not allowed in the sliced cylinder 

by the linear inviscid theory. Consider then, the following physical problem. 
Suppose the cylinder,rotating with an angular velocity a, has a top that is driving 
the fluid within the cylinder by rotating steadily a t  a slightly different rate. 
If a were zero, it  is known that the fluid in the cylinder, aside from certain 
boundary-layer regions, would rotate as a solid body at the mean of the angular 
velocity of the container and its top. If a is different from zero but a 9 E*, 
a completely different flow pattern is established due to the constraint of the 
bottom slope which no longer allows an order one geostrophic flow. Order one 
flows will only appear in boundar-layer regions where the action o i  viscosity is 
sufficient to overcome the cited inviscid constraint. 

The governing equations are again (1) while the boundary conditions are now, 
in non-dimensional form 

q = r O  on z =  1, 
q = O  on r = a  andon .z= ytana.  

The problem then decomposes in the following form. As previous ly discussed 
the velocity qr in the interior of the cylinder is of necessity O(E*), i.e. 

41 = E*q$l’ + Eqi2’ + . . . . (19) 
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In  order to satisfy (18) on z = 1, an Ekman layer of the standard type is required, 
so that in a region (1 -2) = O(E4) the inviscid dynamics gives way to Ekman 
boundary-layer flow. Matching the Ekman layer flow to the interior flow, q,, 
yields a condition on q$’) at z = 1, 

q$’).& = 1 on z = 1. (20) 

That is, the suction into the Ekman layer by the inviscid flow must be such as 
to replace fluid in the Ekman layer which is flung out radially because of the 
faster rotation of the top. Similarly, at  z = ytana  another Ekman layer is 
required, but since the interior flow q, is O(E4) the Ekman layer suction is 
O(E) (see Greenspan 1965), implying that the condition on qi’) a t  z = y tan a is 

qp).& = j.qV)tana on z = ytana. (21) 

Substitution of the expansion (19) into (1) yields the following interior equations 
for qf’), I 2& x qy = - vpy, 

v.qy = 0, 

or, in terms of the pressure, qy) satisfies the relations 

qy - (q‘:’. &) & = g& x vpp,  2qy/2z = 0. 

Thus, the interior motion is two-dimensional to this order, implying that 

or with (20) and (21) qI.l tana = 1. (24) 

The flux into the Ekman layer a t  the top is therefore balanced by a motion 
across lines of constant contour depth a t  a rate that makes the vertical velocities 
at the top and bottom of equal magnitude. 

Writing (24) in terms of the pressure yields 

tana  2pY)lax = 2. (25) 

Therefore pY) is determined up to an arbitrary function of y, i.e. 
A 

p y  = __ (x-X(y)). tan a 

The determination of the function X(y) which yields the flow along the lines of 
constant height must await a discussion of the process by which the boundary 
condition (18) on r = a is satisfied. The simple interior flow cannot itself satisfy 
the conditions on the side wall and a side wall boundary layer of thickness 
E* is required. A boundary layer of thickness Ea does not arise, to this degree 
of approximation, because the tangential component of the interior velocity a t  
the side wall differs from the wall velocity by only O(E*).  An order one discon- 
tinuity would be necessary to require the thicker layer. 

Let the total velocity and pressure away from the Ekman layers at z = I 
and y tan a be written in the form 

( 2 7 )  
= E-1 “I (1) (x,y)+Eq!?(x,y,4+ ...+q,(7,8,z)+ .*.> 

p = E+pY)(x, 9) + EP~)(X, y, Z )  + . . . + E*pb(7, 8, X )  + . . ., 
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y = (a - r )  E-i 
and k.qb = E*W, 6.qb = EQV, P.qb = ESU. 

The perturbation boundary-layer functions q,, p b  = P, must decay exponentially 
fast as 7 + co so that in the interior q = q,. 

Substituting the expansion (27) into (1) and then taking the limit E + 0, 
fixed 7, yields the boundary-layer equations 

P,+2V = 0,)  

a-lPe+2U-V,, = 0, 

W, - U, + a-lV, = 0. 

p,- w,, = 0, 

The velocity variables may be eliminated in favour of the pressure yielding 

p,,,,q, - 4P, = 0, (29) 

(30) I v = -1p where 2 T' 
(J = - la- lp  - 

2 e %P,,tp 
w,, = p,. 

The boundary conditions for P are determined from the corresponding conditions 
on the individual velocity components as follows. There are Ekman layers at 
x = 1 and z = y tan a within the Ei  layer. It can easily be shown that the Ekman 
suction velocity into these boundary layers is O(E$ so that 

W = O  on z = l ,  
W =  Vcos8 tana  on z =  ytana,  

(32) 
whichimply that P, = 0 on z = 1, 

P, = -+tans cos8 P7,, on z = ytana. 
In  addition, to match the interior velocity to the boundary conditions on r = a 

P, = 0 

Pml = O 

+a-'Po + iP,,, = %,(a, 8 )  = a-1 ( X ( a  sin 8)  cos 8 +sin 0)) 

and to ensure a boundary-layer behaviour 
P + O  as ~ + m .  

The solution to (29) is of the form 

P = ~ ~ A , e - ~ \ . ' l c o s [ + h " , l - x ) ] .  
n 

(34) 

The boundary conditions (32) lead to the eigenvalue equation for A, 

tan [+hi( 1 - a tan a sin O)] = tan a cos 9. (35) 

Only roots of (35) with positive real part for An are acceptable. The remaining 
discussion, for simplicity, will be concerned with smalla: (but a 9 EQ). The qualita- 
tive nature of the solution is not affected for a of O( 1). 
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For small a, one root of (35 )  is approximately 

A; = 2acos8, 

while the higher roots are given to order a by 

A i = k 2 n n -  ( n = 1 , 2 , 3  ,... ). 
The general solution for the pressure is then 

m 

n=l 
+ C cos nn-(z - 1) {Aml exp ( - (2n7r); 7) 

+ &An2( 1 - 4 3 i )  exp ( - 4(2n77)3 ( 1  + J 3 i )  7) 

+4An3(1+J3i)exp(-4(2nn)Q(1-J3)i)7)}. 

The boundary conditions (33 )  on r = u lead to the following relations 

A,, = 0, A,2+Ao3 = 

A,, = 0, A,,+ A,, = 0, 
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( 3 6 )  

( 3 7 )  

(39) 

and 

(ddg8,,+2ua~cosO~ A,, (X'( a sin 8)  cos 8 + sin 8) , ( 4 0 )  

dAn2/d8+nnaAn2 = 0. ( 4 1 )  

From the first of these, it is evident that the boundary layer occurs only on part 
of the side wall for which cos 8 < 0, the western side of the basin. Furthermore, 
the form of ( 4 0 )  implies that the right-hand side of this equation must be identic- 
ally zero when cos 8 > 0. This then, allows us to determine the unknown function 
X ( y )  and to complete the interior solution: 

X(y) = ("2--2J2)*, 

p I  = 2a-,E3(x - (a2- y2)*). 

( 4 3 )  

( 4 3 )  

Finally, the coefficient function A,, can be evaluated by integrating ( 4 0 )  and, to 
terms of O(a), the result is 

A,, = - (4ai laJ3)  cos 8 + ZO2, ( 4 4 )  

where Ko2 is an arbitrary constant. To ensure that the mass flux in the boundary 
layer balances the flux in the interior (there is no net transport at either end of the 
boundary layer 8 = Qn-) implies that KO, is zero. 

The solution of (41 )  is A = hr e-nna8 
n2 n2 9 (45 )  

but symmetry and periodicity requirements lead at once to the conclusion that 
all const,ants K,, are zero. Thus only AO2, A,, are non-trivial functions. 
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The complete expression for the pressure is 
r 

p = 2E: a-1 (x - (az - y 2 ) i )  L 
Im exp ( - 91201 cos 014 (1 + 43i)  7 - in;) . (46) 1 8a cos 0 cos 0 - I cos 81 +--( 4 3  

To this order in a, the pressure serves as a stream function for the horizontal 
velocity and the flow is shown in figure 5. 

Shallow 

Deep 

FIGURE 5 .  Streamlines of the steady driven flow, with the boundary layer 
shown on the eastern side of the cylinder. 

A very weak boundary layer on the eastern side of the cylinder, - in < 0 < in, 
is required to bring the O(E6) tangential flow to zero on r = a. However, this is 
not a significant part of the motion, especially in compmison to the western 
boundary layer, and will not be discussed further. 

The constraint due to the bottom incline has completely altered the character 
of the symmetric circulation described earlier in the case a = 0. The only 
O( 1) flow occurs in the upper Ekman layer. In  the main body of the fluid, a very 
slow drift of order E* is predicted along with the presence of a relatively strong 
boundary layer on only one side of the cylinder of thickness Ej wherein the velo- 
cities are O(E6). Thus, the removal of the free geostrophic mode manifests itself 
in the appearance of a non-axially symmetric side-wall boundary layer, or as the 
appearance of Rossby modes in the time-dependent problem. In both cases a 
unique direction is picked out by the rotation vector and the bottom slope. 

The similarity of this solution of a laboratory model with certain solutions 
(e.g. Munk & Carrier 1950) of wind-driven ocean circulation model problems is 
striking. It is natural to identify the boundary current with the Gulf Stream 
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model produced by the aforementioned @-plane viscous theory. This again 
encourages us to believe that more complicated problems relevant to  the under- 
standing of the wind-driven ocean circulation can be further studied both 
experimentally and theoretically in this configuration. 

Shallow 

Deep 
FIGURE 6. A sketch of the stream lines of the observed steady flow, with 
served meanders apparent in the south-eastern portion of the cylinder (by coi 
R. Beardsley ) . 

Shallow 

Deep 
FIGURE 6. A sketch of the stream lines of the observed steady flow, with the ob- 
served meanders apparent in the south-eastern portion of the cylinder (by courtesy of 
R. Beardsley ) . 
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Mr R. Beardsley has experimentally investigated the problem analysed here 
and a photograph and schematic drawing of what he observed appears in figures 6 
and 7 (plate 1). The experiments verify the existence and position of the boundary 
current phenomena as well as the two-dimensional character of the flow for small 
a. There is, however, a dramatic divergence of the experimental result from the 
theory. Emanating from the deepest portion of the cylinder ( r  = u,8 = Q;.) 
(where the Ef layer formally becomes infinitely thick and where the interior 
solution has a branch point singularity) are quasi-steady meanders which seem 
to occupy only the ‘eastern’ section of the cylinder. We are not yet in a position 
to explain the presence of the meanders, but the similarity of these laboratory 
meanders with those found in the real ocean is another striking demonstration of 
the geophysical relevance of this laboratory configuration. 

Finally, it  should be noted that many similar problems can be formulated in 
this configuration which are of geophysical relevance. The problem where the 
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cylinder top drives the fluid in an unsteady manner combines some aspects of 
both problems discussed here. Certainly the corresponding non-linear problems 
would be of great interest. Moreover, the introduction of density stratification, 
caused by either controlled salinity or temperature distributions would un- 
doubtedly produce many significant new effects. Many of these problems are 
being studied a t  present. 

This research was partially supported by the Office of Scientific Research of 
the U.S. Air Force, Grant AF-AFOSR-492-66. 
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FIGURE 7. A photograph showing the observed meanders markod by dye 
(by courtesy of It. Beardsley). 
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